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Abstract 
 

This paper surveys proposed solutions for the problem of insider attack detec-

tion appearing in the computer security research literature. We distinguish be-

tween masqueraders and traitors as two distinct cases of insider attack. After de-

scribing the challenges of this problem and highlighting current approaches and 

techniques pursued by the research community for insider attack detection, we 

suggest directions for future research. 

 

1. Introduction 
 

Recent news articles have reported that the cell phones of prominent Greek leg-

islators were found to be bugged [Error! Reference source not found.]. Rogue 

software was injected into the operational systems of the Greek cell phone pro-

vider, Vodafone Greece, which controlled a tap for incoming and outgoing calls 

on selected phones. The phone used by the prime minister and other high ranking 

officials were apparently targeted. This act was eventually traced to a malicious 

insider who had hacked the Vodafone system sometime in 2004 and installed the 

equivalent of a rootkit on an internal Ericsson phone switch. The hack was acci-

dentally discovered through a mis-configuration of a software update a consider-

able time after the tapping began. The rootkit update accidentally conflicted with 

other system processes and resulted in alarms being set off in the system. The 

complexity of the attack could only be attributed to someone with intimate knowl-

edge of the Ericsson switch operating software, which was developed for the last 

15 years in Greece. 

External threats to the cyber-infrastructure of an organization are constantly 

evolving. The greatest threat, however, is the problem of insiders who misuse their 

privileges for malicious purposes. Insider attack has overtaken viruses and worm 

attacks as the most reported security incident according to a report from the US 

Computer Security Institute (CSI) [Error! Reference source not found.]. The 



 

annual Computer Crime and Security Survey for 2007 surveyed 494 security per-

sonnel members from US corporations and government agencies, finding that in-

sider incidents were cited by 59 percent of respondents, while only 52 percent said 

they had encountered a conventional virus in the previous year.  

Much research in computer security has focused on the means of preventing 

unauthorized and illegitimate access to systems and information. Unfortunately, 

the most damaging malicious activity is the result of internal misuse within an or-

ganization, perhaps since far less attention has been focused inward. Despite clas-

sic internal operating system security mechanisms and the literature on formal 

specification of security and access control policies, including Bell-LaPadula and 

the Clark-Wilson models [Error! Reference source not found., Error! Refer-

ence source not found.], we still have an extensive insider attack problem. Indeed 

in many cases, formal security policies are incomplete and implicit or they are 

purposely ignored in order to get business goals accomplished. There seems to be 

little technology available to address the insider threat problem. The state-of-the-

art seems to be still driven by forensics analysis after an attack, rather than tech-

nologies that prevent, detect, and deter insider attack. 

The inside attacker has been defined in many different contexts with no stan-

dard definition agreed upon by the research community. How might one then 

think it is possible to make scientific progress if the problem itself is ill-defined? 

Nevertheless, there are many well known examples of insider attacks familiar to 

most people.  

For our purposes in this paper, we define a malicious insider to be two classes 

of malfeasant users; traitors and masqueraders. A traitor is a legitimate user 

within an organization who has been granted access to systems and information 

resources, but whose actions are counter to policy, and whose goal is to negatively 

affect confidentially, integrity, or availability of some information asset [Error! 

Reference source not found.,Error! Reference source not found.]. The traitor 

uses his/her legitimate credentials when perpetrating their malicious actions, such 

as in the Greek Vodafone case mentioned above.  

The most familiar example of an insider is a masquerader; an attacker who suc-

ceeds in stealing a legitimate user’s identity and impersonates another user for ma-

licious purposes. Credit card fraudsters are perhaps the best example of masque-

raders. Once a bank customer’s commercial identity is stolen (e.g. their credit card 

or account information), a masquerader presents those credentials for the mali-

cious purpose of using the victim’s credit line to steal money.  

We may distinguish traitors and masqueraders based upon the amount of 

knowledge each has. A traitor of course has full knowledge of the systems they 

routinely use and likely the security policies in force. The masquerader may have 

far less knowledge than the traitor. Furthermore, an insider attack may be due to 

an innocent mistake by a legitimate user. Hence, insider attack may also be distin-

guished by intent of the user’s actions.  Traitors and masqueraders are two sides of 

what we consider to be the insider threat. The distinction is not entirely satisfac-

tory. After all, a disgruntled insider employee may act as a traitor and a masque-

rader after stealing the identity of a coworker. But for our present purposes, the 



 

distinction is clear enough to consider the general themes of past research in in-

sider attack detection.  

 

An extensive literature exists reporting on approaches that profile user behavior 

as a means of detecting insider attack, and identity theft in particular. A traitor is 

presumed to have full knowledge of the internal systems of an organization to 

which they belong. They use their own credentials and the access granted by those 

credentials to perform their malicious deeds. A traitor may exhibit normal behav-

ior and still perpetrate malicious acts. Profiling user behavior in this case may 

seem less relevant except for identifying subtle but significant changes in a user’s 

normal behavior. A masquerader, on the other hand, has stolen someone’s creden-

tials, and is unlikely to know the behavior of their victim. Thus, even though they 

control the victim’s credentials that grant access to whatever the victim is author-

ized to use, the masquerader is likely to perform actions inconsistent with the vic-

tim’s typical behavior.  

Behavior is not something that can be easily stolen. Stealing someone’s credit 

card information does not reveal the amount and frequency of what the victim 

typically buys and from whom. Hence, if one profiles the typical buying patterns 

of a customer (and keeps this historical information secret) an identity thief, a 

masquerader, has a relatively low probability of misusing the stolen quarry in a 

manner consistent with the victim's behavior that will go unnoticed. Fraudulent 

transactions are thus fairly easy to detect even given proper credentials and credit 

availability. It is this observation that the credit card companies recognized a cou-

ple of decades ago when designing early fraud warning systems, and this idea has 

largely been the driving theme for much subsequent research on masquerade de-

tection.  

On the other hand, a traitor is presumably behaving normally and hence profil-

ing a user to detect significant change as a means of detecting malicious actions 

may not be the best strategy for detecting this class of insider attack. The intelli-

gence and military communities are challenged with detecting traitors and have 

devised a host of means of using decoys and trap-based defenses to entice and 

trick users into revealing their nefarious actions. Far less work has been reported 

in the computer security literature on developing decoy network defenses beyond 

early work on honeypots and general ideas on the use of honeytokens of various 

forms. The detection of traitors is an area ripe with challenges begging for new re-

search.  

In the following sections, we provide a general overview of the literature on the 

insider problem driven primarily by various methods of profiling user actions and 

the systems they use. Much of the work reports on studies describing various audit 

sources and algorithms to profile users that are tested on simulated masquerade at-

tack data. Researchers have also distinguished between network-level and host-

level detection systems. Most of this work is specific to masquerade attack detec-

tion, although some work is reported on trap-based defenses aimed to the traitor 

detection problem using honeypots and honeytokens. We conclude with a view of 



 

what we see as the state-of-the-art of the insider attack detection problem, and we 

provide recommendations on future research directions. 

 

2. Insider Attacks 
 

In order to understand how to detect malicious insider actions, we have to un-

derstand the many forms of attack that have been reported [Error! Reference 

source not found.]. For example:  

 

• Unauthorized extraction, duplication, or exfiltration of data 

• Tampering with data (unauthorized changes of data or records) 

• Destruction and deletion of critical assets 

• Downloading from unauthorized sources or use of pirated software which 

might contain backdoors or malicious code 

• Eavesdropping and packet sniffing 

• Spoofing and impersonating other users 

• Social engineering attacks 

• Misuse of resources for non-business related or unauthorized activities 

• Purposefully installing malicious software  

 

Each of these actions can be considered malicious, but not every one of them 

may leave an audit trail which can be easily accessed. Several of these actions do 

leave some trail in some log file which can be linked to the actions of a user after 

the fact. Hence, when a malfeasance is detected, there is some hope forensics 

could lead to the perpetrator. Log analysis remains the state-of-the-art in insider 

attack detection, after a breach has been discovered. Naturally, sophisticated at-

tackers may expend much effort trying to cover their tracks and attacking the log-

ging or auditing sources to remain stealthy. If an organization is not actively moni-

toring their systems (and users) with sufficient controls preventing tampering with 

monitor logs, an inside attacker will undoubtedly rarely be detected.  

In an insider threat study in the banking and finance sector, Randazzo et. al. 

[Error! Reference source not found.] list the characteristics of insider attacks. 

Their analysis of validated cases of insider attack indicated that: 

• Most incidents required little technical sophistication 

• Actions were planned 

• Motivation was financial gain 

• Acts were committed while on the job 

• Incidents were usually detected by non-security personnel 

• Incidents were usually detected through manual procedures 

 

These observations should motivate any organization to field monitoring sys-

tems to have any hope of automatically and reliably detecting, and deterring, in-

sider attack. We note from this study that most insider attacks on hosts seem to 

occur at the application level and not at the network-level and hence host-based 

monitoring is not a desiderata, it is a requirement. 



 

When monitoring systems to mitigate the insider threat one can collect audit 

data at either host level activity, network level activity, and or a combination of 

the two. The main consideration is scalability versus coverage. Hosts sensors are 

hard to deploy, network sensors are relatively easy to install. Many of the insider 

problems do not even touch the network level. Schultz pointed out that not one 

approach will work but solutions need to be based on multiple sensors to be able 

to find any combination of features to detect insiders [Error! Reference source 

not found.]. Models to detect insider threats will only be as good as the data col-

lected.  

 

3. Detecting Insider Attacks  
 

3.1. Host-based User Profiling 
Understanding the intent of some user action is important to mitigate the in-

sider attack problem. Once an attack has taken place, an investigator needs to re-

construct the intent of the attacker from the audit source. This is a slow and man-

ual process which cannot be easily generalized to pre-attack analysis. Rules might 

be able to be crafted to cover known attacks, but sophisticated attackers will find 

new ways and new attack methods to fly under the radar. In addition, the task of 

keeping rules or profiles updated to the latest threat is a significant challenge to 

using a host-based protection scheme. 

One approach reported in the literature is to profile users by the commands they 

issue (among the first is [Error! Reference source not found.]). In the general 

case of computer user profiling, the entire audit source can include information 

from a variety of sources:  

• Command line calls issued by users 

• System call monitoring for unusual application use/events 

• Database/file access monitoring 

• Organization policy management rules and compliance logs 

The type of analysis used is primarily the modeling of statistical features, such 

as the frequency of events, the duration of events, the co-occurrence of multiple 

events combined through logical operators, and the sequence or transition of 

events. However, most of this work failed to reveal or clarify the user’s intent 

when issuing commands. The focus is primarily on accurately detecting change or 

unusual command sequences. We begin with a survey of a collection of papers 

whose primary focus is command sequence analysis. 

 

3.1.1. Modeling Unix Shell Commands  
A hybrid high-order Markov chain model was introduced by Ju and Vardi 

[Error! Reference source not found.]. A Markov chain is a discrete-time sto-

chastic process. The goal of the work is to identify a “signature behavior” for a 

particular user based on the command sequences that the user executed. In order 

to overcome the high-dimensionality, inherent in high-order Markov chains, a 

“mixture transition distribution” (MTD) approach is used to model the transition 



 

probabilities. When the test data contains many commands unobserved in the 

training data, a Markov model is not usable. Here, a simple independence model 

with probabilities estimated from a contingency table of users versus commands 

may be more appropriate. The authors used a method that automatically toggled 

between a Markov model and an independence model generated from a multino-

mial random distribution as needed, depending on whether the test data were 

“usual” (i.e. the commands have been previously seen), or “unusual” ( i.e. Never-

Before-Seen Commands or NBSCs).  

Schonlau et al. applied six masquerade detection methods to a data set of 

“truncated” UNIX shell commands for 70 users [Error! Reference source not 

found.] collected using the UNIX acct auditing mechanism. Each user had 15,000 

commands collected over a period of time ranging between a few days and several 

months. 50 users were randomly chosen to serve as intrusion targets. The other 20 

users were used as simulated masqueraders. The first 5000 commands for each of 

the 50 users were left intact or “clean”, the next 10,000 commands were randomly 

injected with 100-command blocks issued by the 20 masquerade users. When 

commands are grouped into blocks of 100 commands each, the block is either 

“clean”, or “dirty”, that is all 100 commands were originated by a masquerader. 

The complete data set and more information about it can be found at 

http://www.schonlau.net. The objective was to accurately detect the “dirty” blocks 

and classify them as masquerader blocks. This data set was widely used by sev-

eral authors that investigated different detection methods and has served as the 

standard benchmark dataset for this line of research. 

One detection method explored by Schonlau, called “uniqueness” relies on the 

fact that half of the commands in the training data are unique (i.e used by one user 

only), and many more are unpopular amongst the users ,(i.e used only by a few 

users). The second method investigated was the Bayes one-step Markov approach. 

It was based on one step transitions from one command to the next. The approach, 

due to DuMouchel [Error! Reference source not found.], uses a Bayes factor 

statistic to test the null hypothesis that the observed one-step command transition 

probabilities were consistent with the historical transition matrix. The two hy-

potheses modeled were the null hypothesis, which assumed that the observed 

transitions probabilities stem from the historical transition matrix, and the alterna-

tive hypothesis which assumed that they were generated from a Dirichlet distribu-

tion. 

A hybrid multi-step Markov method similar to the one introduced by Ju and 

Vardi [Error! Reference source not found.5] is also used. The fourth method 

used, called the compression method, was based on the premise that test data ap-

pended to historical training data compressed more readily when the test data 

stemmed from the very same user rather than from a masquerader, and was im-

plemented through the UNIX tool “compress” which implements a modified 

Lempel-Ziv algorithm. 

IPAM (Incremental Probabilistic Action Modeling), another method applied 

on the same dataset, and introduced by Davidson and Hirsch [Error! Reference 

source not found.] was also based on one-step command transition probabilities 



 

estimated from the training data. The probabilities were continuously updated fol-

lowing an exponential decay scheme with the arrival of a new command.  

The sequence-match approach was presented by Lane and Brodley [Error! 

Reference source not found.]. For each new command, a similarity measure is 

computed between the 10 most  recent commands and a user’s historical profile. 

A user’s profile consisted of command sequences of length 10 that the user had 

previously used. The similarity measure was a count of the number of matches in 

a command-by-command comparison of 2 command sequences with a greater 

weight assigned to adjacent matches. This similarity measure was computed for 

the test data sequence paired with each command sequence in the profile.  

Maxion and Townsend applied a naïve Bayes classifier, which had been 

widely used in text classification tasks, to the same data set [Error! Reference 

source not found.]. Maxion provided a thorough and detailed investigation of 

classification errors of the classifier in a separate paper [Error! Reference source 

not found.], highlighting why some masquerade victims were more vulnerable 

than others, and why some masqueraders were more successful than others. Kil-

lourhy and Maxion also investigated a shortcoming of the naïve Bayes classifier 

when dealing with NBSCs [Error! Reference source not found.]. 

The semi-global alignment method presented by Coull et al. [Error! Reference 

source not found.] is a modification of the Smith-Waterman local alignment al-

gorithm. It uses a scoring system that rewards the alignment of commands in a 

test segment, but does not necessarily penalize the misalignment of large portions 

of the signature of the user. 

Another approach called a self-consistent naïve Bayes classifier is proposed by 

Yung [Error! Reference source not found.] and applied on the same data set. 

This method was a combination of the naïve Bayes classifier and the EM-

algorithm. The self-consistent naïve Bayes classifier is not forced to make a bi-

nary decision for each new block of commands, i.e. a decision whether the block 

is a masquerader block or not. Rather, it assigns a score that indicates the prob-

ability that the block is a masquerader block. Moreover, this classifier can change 

scores of earlier blocks as well as later blocks of commands. 

Oka et al. had the intuition that the dynamic behavior of a user appearing in a 

sequence could be captured by correlating not only connected events, but also 

events that were not adjacent to each other, while appearing within a certain dis-

tance (non-connected events). With that intuition they developed the layered net-

works approach based on the Eigen Co-occurrence Matrix (ECM) [Error! Refer-

ence source not found., Error! Reference source not found.]. The ECM 

method extracts the causal relationships embedded in sequences of commands, 

where a co-occurrence means the relationship between every two commands 

within an interval of sequences of data. This type of relationship cannot be repre-

sented by frequency histograms nor through n-grams. 

Table 1 presents the estimated accuracy of the classification methods which are 

all based on a two-class supervised training methodology whereby data is labeled 

as self or non-self. The Schonlau data used is a mixture of command sequences 

from different users. The classifiers produced in these studies essentially identify 



 

a specific user from a set of known users who provided training data. Further-

more, mixing data from multiple users to train classifiers to detect masqueraders 

is complicated and fraught with problems. Besides potential privacy threats, re-

quiring the mixture of data from multiple users requires substantial retraining of 

classifiers as users join and leave an organization. 

 

Table 1: Summary of accuracy performance of Two-Class Based Anomaly 

Detectors Using the Schonlau Data Set 
 

In a real-word setting it is probably more appropriate to use a one-class, 

anomaly detection-based training approach. Wang and Stolfo experimented with 

one-class training methods in [Error! Reference source not found.] using a na-

ïve Bayes classifier and a Support Vector Machine (SVM) model of user com-

mands to detect masqueraders. The authors have also investigated SVMs using 

binary features and frequency-based features. The one-class SVM algorithm using 

binary features was the best performing classifier among four one-class training 

algorithms that were analyzed. It also performed better than most of the two-class 

algorithms listed above, except the two-class multinomial Naïve Bayes algorithm 

with updating. In summary, Wang and Stolfo’s experiment confirmed that, for 

masquerade detection, one-class training is as effective as two-class training.  

Szymanski and Zhang [Error! Reference source not found.] proposed recur-

sively mining the sequence of commands by finding frequent patterns, encoding 

them with unique symbols, and rewriting the sequence using this new coding. A 

signature was then generated for each user using the first 5000 commands. The 

process stopped when no new dominant patterns in the transformed input could be 

discovered. They used a one-class SVM classifier for masquerade detection. Al-

though they presented a weighting prediction scheme for author identification, we 

will limit our focus here to the masquerade detection application of their ap-

proach. The authors used an individual intrusion detection approach with 4 fea-

tures (the number of dominant patterns in levels 1 and 2, and the number of dis-

tinct dominant patterns in levels 1 and 2), as well as a “communal” intrusion 

detection approach, where they added new features, such as the number of users 

Method False Alarms (%) Missing Alarms (%) 

Uniqueness 1.4 60.6 

Bayes one-step Markov 6.7 30.7 

Hybrid multi-step Markov 3.2 50.7 

Compression 5.0 65.8 

Sequence Match 3.7 63.2 

IPAM 2.7 58.9 

Naïve Bayes (Updating) 1.3 38.5 

Naïve Bayes (No Updating) 4.6 33.8 

Semi-Global Alignment 7.7 24.2 

Eigen Co-occurrence Matrix 3.0 28.0 

Naïve Bayes + EM 1.3 25.0 



 

sharing each dominant pattern in a block. Again, such an approach demands mix-

ing user data and may not be ideal or easily implemented in a real-world setting. 

Dash et al [Error! Reference source not found.] created user profiles from 

groups of commands called sequences. 13 temporal features are used to check the 

consistency of patterns of commands within a given temporal sequence. Probabili-

ties are calculated for movements of commands within a sequence in a predefined 

reordering between commands. They achieve high accuracy but also high false 

positive rates on their experiments. 

Seo and Cha [Error! Reference source not found.] experimented with com-

binations of SVM kernels with some success. They managed to increase the accu-

racy at the expense of somewhat higher false positives. 

Tan and Maxion investigated which detector window size would enable the 

best detection results [Error! Reference source not found.]. They uncovered that 

the best detector window size was dependent on the size of the minimal foreign 

sequence in test data, which is not determinable a priori. A foreign sequence is 

one that is not contained in the alphabet set of the training data, but each of its in-

dividual symbols is, whereas a minimal foreign sequence is a foreign sequence 

that contains within it no smaller foreign sequences. 

It has been shown that the Schonlau data set was not appropriate for the mas-

querade detection task. Maxion lists several reasons [Error! Reference source 

not found.]. First, the data was gathered over varied periods for different users 

(from several days to several months), and the number of login sessions varied by 

user. Second, the source of data is not clear. We do not know whether the users 

perform the same jobs or are widely spread across different job functions. More-

over, in acct, the audit mechanism used to collect the data, commands are not 

logged in the order in which they are typed, but rather when the application ends. 

Hence the methods applied that focus on strict sequence analysis may be faulty.  

In order to alleviate some of the problems encountered with the Schonlau data 

set, Maxion applied naïve Bayes classifier to the Greenberg data set, a user com-

mand data set enriched with flags and arguments in [Error! Reference source 

not found.]. He compared the performance of the classifier on the Greenberg data 

set by using enriched commands and truncated commands. The hit rate achieved 

using the enriched command data was more than 15% higher than with the trun-

cated data. However, the false positives rate was approximately 21% higher as 

well. Nevertheless, when plotting the ROC curves for both data sets, the one for 

enriched data runs above the ROC curve for truncated data, showing that a better 

detection performance can be achieved using the user commands enriched with 

flags and arguments. 

As noted, several types of attributes and statistical features can be used for 

modeling a user’s actions. Ye et al. studied the attributes of data for intrusion de-

tection [42]. The attributes studied included the occurrence of individual events 

(audit events, system calls, user commands), the frequency of individual events 

(e.g. number of consecutive password failures), the duration of individual events 

(CPU time of a command, duration of a connection), and combinations of events, 

as well as the frequency histograms or distributions of multiple events, and the 



 

sequence or transition of events. The goal was to find out whether the frequency 

property was sufficient for masquerader detection, and if so whether there was a 

single event at a given time sufficient for detecting a masquerader. Five probabil-

istic techniques were investigated on system call data: a decision tree, Hotelling's 

T
2 

test, the chi-square test, the multivariate test, and the Markov chain. The data 

set used was made up of 250 auditable security-relevant events collected by the 

Solaris Basic Security Module (BSM) and 15 simulated intrusions on the back-

ground of normal activities. The investigation confirmed the importance of both 

the frequency property, and the ordering property of events. 

 

3.1.2. User Profiling in Windows Environments 
Less research work has been applied to Windows environments compared to 

work directed for the Unix environment. Much of the difference lies in the audit-

ing methods available on each platform. Linux apparently has cleaner auditing 

mechanisms (acct, BSM, etc.) whereas Windows has a plethora of system actions 

that can be captured by various monitoring subsystems.  

Shavlik et. al. presented a prototype anomaly detection system that creates sta-

tistical profiles of users running Windows 2000 [34]. Their algorithm measures 

more than two-hundred Windows 2000 properties every second, and creates about 

1500 features from the measurements. The system assigns weights to the 1500 

features in order to accurately characterize the particular behavior of each user – 

each user thus is assigned his or her own set of feature weights as their unique sig-

nature. Following training, each second all of the features “vote” as to whether or 

not it seems likely that an intrusion has occurred. The weighted votes “for” and 

“against” an intrusion are compared, and if there is enough evidence, an alarm is 

raised.   

Nguyen, Reiher & Kuenning propose detecting insider threats by monitoring 

system call activity [Error! Reference source not found.]. Instead of building 

profiles on system call traces, they analyze relationships between users and files, 

users and processes, and processes and files. They build user-oriented models as 

well as process-oriented models using file system and process-related system calls 

exploiting the regularity in the patterns of file accesses and process-calling by 

programs and users. They focus on building a Buffer-overflow Detection System 

(BDS), which is able to detect buffer overflows in many cases, but only if they oc-

cur in a set of programs that have a fixed list of children, i.e. only 92% of pro-

grams. The authors’ approach, as they point out, was not suitable for detecting ma-

licious insider activity on laptops, because the traces collected on laptops are very 

dynamic and users do not have a fixed pattern of working time which could be 

used to define an adequate time window for analysis. 

Jha et. al. present a statistical anomaly detection algorithm that has the potential 

of handling mixtures of traces from several users (this will occur when several us-

ers are colluding) by using mixtures of Markov chains. The technique which has 

an unobserved or hidden component can be compared to Hidden Markov Models 

(HMMs). The training algorithm for HMMs runs in time O(n*m
2
)), where n is the 

number of states in the HMM and m is the size of the trace, whereas, the training 



 

time for Markov chains is O(m). So the authors’ approach was less computation-

ally-expensive than HMMs. 

Li and Manikopoulos [Error! Reference source not found.] explored model-

ing user profiles with SVMs using a audit data from a Windows environment 

gathered over a year. They model the sequence of windows and processes over 

time in a manner similar to what a process sensor would see. They simulate attack 

data by mixing data between legitimate user sessions. They reported some success 

at modeling the user profiles, but suffer with high false positive rates.  

In most of the approaches surveyed above, either user command data or system 

calls data were used. User command data fail to capture window behavior and do 

not include commands executed inside a script, whereas system call data are not 

particularly human-readable, nor easily attributed to direct user action. On the 

other hand, process table data includes window behavior and anything running in 

a script, and can be easily interpreted when read by a human. Moreover, window 

tracing provides information at a level of granularity somewhere between the lev-

els of a command line and a system call, while most of the system noise can be fil-

tered out (a formidable challenge when tracing Windows), which makes it a good 

candidate for user profiling. 

Goldring collected user data consisting of successive window titles with proc-

ess information (from the process table) for a group of users over 2 years [11]. The 

combination of data sources allowed use of the process tree structure to filter out 

system noise. However it complicated the feature selection task. The system re-

duces the stream of data to a single feature vector that consists of a mixture of dif-

ferent feature types per session. A record is generated each time a new window is 

opened including information about the window title, and all contents in a window 

title’s bar (a wealth of new information, e.g. subject lines of emails, names of web 

pages, files and directories). Besides that, the window’s process and parent proc-

ess ID’s are saved. The window titles’ data allows one to distinguish between the 

operating system’s programs such as Control Panel and find Files, which would 

not be distinguishable from inspecting the process table alone. Goldring reported 

no performance results, but rather presented a proof-of-concept system. Even if 

detailed accuracy results were reported, the datasets used bear little resemblance to 

other data used by researchers. This highlights another important methodological 

weakness of this line of research where a paucity of data makes it difficult to 

know whether advances have been made.  

 

3.1.3. User Profiling in Web Environments 
There is a vast literature on data mining methods applied to web user “click” 

data for marketing analytics that goes well beyond the scope of this paper. How-

ever, some work has been done focusing on web profiling for security problems. 

Kim, Cho, Seo, Lee, and Cha studied the problem of masquerade detection in a 

web environment. They focused on “anomalous web requests generated by insid-

ers who attempted to violate existing security policies given by the specific or-

ganization” [Error! Reference source not found.]. They applied SVMs to web 



 

server logs and used two different kernels: TinySVM (an implementation of SVM 

for pattern recognition) and the Radial Basis Function (RBF) kernel. Only simple 

features were used, i.e. neither session features, nor temporal features were in-

cluded. Simple features are those related to a single web sever request such as the 

IP address, the hour of the day, the HTTP method (get, post, put, delete, options, 

head, and trace), the requested page ID, the request status code, the number of 

transferred bytes, etc. The results showed that SVMs achieved near-perfect classi-

fication rates using simple features only. However, the method used did not handle 

concept drift well, and failed to generalize the model for two users due to changes 

in user behavior. 

 

3.1.4. Program Profiling Approaches 
Besides user issued commands, inside attackers may inject programs or infect 

host systems causing changes in underlying system configurations and program 

behaviors. Hence, approaches to profiling environments and program executions 

may have relevance to the insider attack detection problem. Much work in this 

area is devoted to detection of code injection attacks, too broad a topic to describe 

here. A few characteristic works are described in the following.  

Forrest et al. proposed a real-time on-line anomaly detection system [Error! 

Reference source not found.] that mimicked the mechanisms used by the natural 

immune systems. This is done by monitoring system calls of running privileged 

processes (profiles were built using normal runs of such programs). The modeling 

is limited to privileged root processes since they have more access to computer re-

sources than user processes, and they have a limited range of behavior that is quite 

stable and predictable. A separate database of normal behavior is built for each 

privileged process. The database was specific to a particular architecture, software 

version and configuration, local administrative policies, and usage patterns, pro-

viding a unique definition of “self”. 

 The underlying assumptions are that the sequences of system calls executed 

by a program are locally consistent during normal operation, and that if a security 

hole in a program is exploited, then abnormal sequences of system calls will oc-

cur. A number of experiments were performed using the normal traces of the 

sendmail and lpr processes as examples. The results obtained showed that the be-

havior of different processes was easily distinguishable using the sequence infor-

mation alone for these two system programs. Several attacks on the sendmail 

process were tested, such as the sunsendmailcp script, the syslog attack, the lprcp 

attack script, the decode attack, and the lpr attack. Other sources of anomalous be-

havior tested included unsuccessful intrusion attempts, such as remote attack 

scripts, called sm565a and sm5x, and error conditions. The results have shown 

that short sequences of system calls could indeed define a unique and stable signa-

ture, which allows for the detection of common sources of anomalous behavior. 

 The method proposed is computationally efficient and has very low storage 

requirements. Many aspects of process behavior are ignored (e.g. parameter values 

passed to system calls, timing information, and instruction sequences between sys-

tem calls). Although the approach could enable the detection of several scenarios, 

such as when a program moves to an unusual error state during an attempted 



 

break-in, when an intruder replaces code inside a running program, and when new 

processes are forked., it would not detect race conditions or masqueraders using 

another user’s account. This work led to a number of derivative ideas explored by 

the computer security community.  

Stolfo et al. [Error! Reference source not found.] present the. modeling of 

accesses to the Windows Registry by exploiting regularity in process accesses to 

the Windows registry. Malicious code often misuses Registry keys in various 

ways that are detectable as anomalous queries. They introduced a general purpose 

anomaly detection algorithm, the Probabilistic Anomaly Detection (PAD) algo-

rithm, that assumes anomalies are statistical outliers and hence are a minority of 

the training data. PAD was applied to model Registry queries and was compared 

with the One-Class Support Vector Machine (OCSVM) algorithm using several 

different kernels. PAD showed better performance, both in accuracy, and in com-

putational complexity, achieving a 100% detection rate of anomalies with a 5% 

false positives rate for the particular test sets available for the study. 

 

3.2. Network-Based Sensors 

 
3.2.1. Network Observable User Actions 

ARDA sponsored a Cyber Indications and Warning workshop dealing with the in-

sider threat. One of the lessons learned was that in many cases insider threats have 

authorization to access information but may access information they do not have a 

“need to know”. When an insider accesses information that they do not need to 

know, one may have good evidence of an insider attack. A system for detecting 

insiders who violate need-to-know, called ELICIT, was developed by Maloof and 

Stephens [Error! Reference source not found.]. The focus of their work was on 

detecting activities, such as searching, browsing, downloading, and printing, by 

monitoring the use of sensitive search terms, printing to a non-local printer, 

anomalous browsing activity, and retrieving documents outside of one’s social 

network. Five malicious insider scenarios were tested, that represented need-to-

know violations. Contextual information about the user identity, past activity, and 

the activity of peers in the organization or in a social network were incorporated 

when building the models. HTTP, SMB, SMTP, and FTP traffic was collected 

from within a corporate intranet network for over 13 months, but no inbound or 

outbound traffic was gathered. In order to identify the information deemed outside 

the scope of an insider’s duties, a social network was computed for each insider 

based on the people in their department, whom they e-mailed, and with whom 

they worked on projects. A Bayesian network for ranking the insider threats was 

developed using 76 detectors. Subject-matter experts defined the thresholds for 

these detectors, at which an alarm is set. A single threat score is computed for 

each user based on the alerts from these detectors.  

Identifying specific users from observable network events consumed consider-

able effort. Event attribution proved to be a major challenge: 83% of events ini-

tially had no attribution, and 28.6% of them remained un-attributed, even after the 



 

use of two off-line methods to determine the originator of a particular event. The 

evaluation of the system used scenarios that were executed over a short period of 

time, less than one day. However, attacks by insiders who violate need-to-know 

usually occur over days, months, and even decades, such as in the case of Robert 

Hanssen. Therefore, it is important to evaluate the ELICIT system using other 

scenarios that occur over longer periods of time. In any event, although interest-

ing, the focus of this system is limited to environments and organizations that have 

a formal policy restricting access to information on a need-to-know-basis. It is rare 

that such controls are easily discernible in most organizations.  

 

3.2.2. Honeypots 
Honeypots are information system resources designed to attract malicious us-

ers. Honeypots have been widely deployed in De-Militarized Zones (DMZ) to trap 

attempts by external attackers to penetrate an organization’s network. Their typi-

cal use is for early warning and slowing down or stopping automated attacks from 

external sources, and for capturing new exploits and gathering information on new 

threats emerging from outside the organization. These trap-based defenses are also 

useful for the insider threat.  

Spitzner presented several ways to adapt the use of honeypots to the insider at-

tack detection problem [Error! Reference source not found.]. Since insiders 

probably know what information they are after, and in many cases, where that in-

formation is to be found, and possibly how to access it, he recommends implant-

ing honeytokens with perceived value in the network or in the intranet search en-

gine. A honeytoken is “information that the user is not authorized to have or 

information that is inappropriate” [Error! Reference source not found.]. This in-

formation can then direct the insider to the more advanced honeypot that can be 

used to discern whether the insider intention was malicious or not, a decision that 

may be determined by inspecting the insider’s interaction with the honeypot. In 

order to reach such interaction that will be used to gather information, it is impor-

tant to ensure that the honeypot looks realistic to the insider. Humans have a keen 

sense of suspicion, and hence the grand challenge for honeypots or any trap-based 

defense is believability, while preventing poisoning of operational systems.  

Honeypots suffer from some shortcomings. First, the inside attacker may not 

ever use or interact with the honeypot or honeytoken, especially if their identity is 

known or discovered by the insider. Moreover, if an attacker discovers a honey-

pot, he/she can possibly inject bogus or false information to complicate detection.  

 

3.3. Integrated Approaches 
Among the first integrated systems devised for the malicious insider detection 

problem was the one presented by Maybury et al. in [Error! Reference source 

not found.]. The integrated system used honeypots, network-level sensors for traf-

fic profiling to monitor scanning, downloads, and inside connections, and Struc-

tured Analysis, a real-time and top-down structural analysis that uses the models 

of insiders and pre-attack indicators to infer the malicious intent of an insider. 

Moreover, several data sources were used in addition to auditing of cyber assets. 



 

Physical security logs, such as employee badge readers, were also integrated to 

keep track of the location of a user. The program funding this effort apparently 

ended prematurely. Insufficient test and evaluations were performed on an ap-

proach that seemed quite promising. 

3.4. Summary 
By way of summary, the papers surveyed report the use of heterogeneous 

audit sources. Most user profiling techniques designed for use in the Unix or 

Linux environment used the Schonlau data set, a data set made up of truncated se-

quences of user commands. We have surveyed all two-class based methods and 

the few one-class based methods applied to this data set. Other approaches using 

other data sets, such as the Greenberg data set that includes command flags and 

arguments, were presented. User commands in Unix and Linux environments are 

easily captured in and are directly observable user actions. The Schonlau datasets 

serve as a general benchmark dataset and hence most of the literature has been fo-

cused on masquerade detection using Unix commands. 

In the Windows operating system environment, a variety of audit sources 

can be exploited. The range of data available inclues system calls, registry ac-

cesses [Error! Reference source not found.] which occur when users execute 

applications, and a combination of process and windows data (window title, how 

long a window has been open, etc.).   

On the network level, the observables are more distant from a distinct user. 

Attributing of a network level event to a distinct user is a hard. Detecting masque-

raders from network level data alone remains a challenge. However network level 

events are valuable in detecting malicious or unusual activities such as massive 

downloading of information that the insider does not have a need to know, or the 

dissemination of information outside the organization's network.  

In the reports appearing in the research literature it appears that the data 

used for training is real data acquired from real sources. However, for testing of 

proposed detection methods, most authors had to resort to simulated attacks. For 

instance, Maloof and Stephens asked a red team to perform some attacks based on 

pre-defined scenarios, and Schonlau used normal user data injected into a different 

user’s data set to serve as a simulated masquerade data. That is hardly a real mas-

querade attack.  

The approaches used also depend on the type of insider problem tackled. For 

masquerade detection the approach of choice was host-based user profiling, 

whereas for traitor detection other approaches, such as host-based program profil-

ing using systems calls or registry access data, were used to detect the malicious 

activity on a system. Network-level sensors were used for traitor detection by 

Maybury et al. and by Maloof and Stephens, whose approach seems promising for 

the detection of need-to-know violations. There have been a limited number of re-

ports on trap-based, or honeypot-based, detection methods for the insider problem.  

Of particular note is the difficulty of comparatively evaluating competing 

methods and approaches. This is primarily due to the lack of a uniform test data 

with known ground truth. Although, the Schonlau data set has been widely used 

by many authors, it has been shown that it is far from being suitable for an objec-

tive evaluation of the insider attack detection algorithms.  



 

Table 2 represents a general summary of specific audit sources used by re-

searchers to detect masqueraders or traitors gleaned from the surveyed research 

papers. Each cell of the table represents our opinion about how well a specific ap-

proach may be suitable as an audit source to detect masqueraders or traitors, ex-

pressed on a simple scale from Low to High. For example, researchers conjecture 

that a masquerader is more likely to trigger anomaly behavior models by execut-

ing commands that are unusual for the victim whose credentials they have stolen. 

Consequently, it is assumed that user command auditing has a high chance of suc-

cessfully detecting masqueraders. That assumption has driven a considerable 

amount of research activity as described in section 3. Network-level audit sources 

are assumed helpful in detecting violations of “need to know” policies, such as ex-

filtration of data and hence have a high chance of successfully identifying traitors. 

Honeypots and related decoy technologies are proposed as suitable technologies 

for traitor detection, as well as masquerader detection. Alternatively, it is unclear 

how well an insider attack may be detected from Unix System Call anomalies, and 

hence we rate the utility of this audit source as low. We are unaware of any formal 

study of each audit source validating or refuting these assumptions. This table may 

serve as a guide for future research in monitoring technologies for insider attack 

detection 

.  

 



 

Table 2: Summary of Insider Approaches and Suitability of Audit Mechanism. 
 

 

 

 

4. Future Research Directions 
 

User profiling as a means of identifying abnormal user behavior is well estab-

lished as a primary methodology for masquerader attack detection. As we have 

noted, a masquerader impersonates another persona and it is unlikely the victim’s 

behavior will be easily mimicked. Hence, abnormal behavior is a good indicator of 

a potential masquerade attack as a consequence of identity theft. User profiling 

may also be useful in detecting a traitor, if subtle but significant changes in a 

user’s behavior indicate a malicious activity. We believe that it will be important 

to derive user profile models that reveal user intent in order to hone in on insider 

actions that are suspicious and likely malicious. It may not be enough to know of a 

 Masquerader  Internal Traitor 

Two-Class Classifiers:  

Unix Command Se-

quences 

High – Unfamiliar with 

local environment and 

user behavior 

Medium – Can possibly 

mimic another normal 

user or train the classifier 

One-Class: 

Unix Command se-

quences 

High – Unfamiliar with 

local environment and 

user behavior 

Medium – Can possibly 

mimic another normal 

user or train the classifier 

Unix Audit Events Medium – Given proper 

credentials and might not 

trigger alerts 

Low – Application level 

malicious acts may not 

manifest as unusual 

events 

Unix System Calls Medium – Might not vio-

late system call profile 

Low – Application level 

malicious acts may not 

manifest as unusual 

events 

Window Usage Events Medium – Given proper 

credentials and might not 

trigger alerts 

Low – Application level 

malicious acts may not 

manifest as unusual 

events 

Windows Registry access Medium – unless mali-

cious programs access 

Registry 

Medium – unless mali-

cious programs access 

Registry 

Network Activity Audit Medium – If attack uses 

network and attribution is 

possible 

High – If attack uses net-

work  and attribution is 

possible 

Honeypots and Decoy 

Technologies 

High – Unfamiliar with 

local information and 

likely to interact with 

honeypot 

Medium – Unlikely to in-

teract if aware of the lo-

cation of honeypots 



 

malicious act merely from knowing that a user has issued an abnormal command 

sequence unless that sequence could violate a security policy. For example, we 

conjecture that modeling a user’s search behavior may be one way of capturing a 

user’s intent to seek information for malicious purposes, something that a masque-

rader, and possibly a traitor, is likely to do early in their attack behavior. Too 

much searching, or searching in abnormal directories or locations, seems more 

than odd, it may seem sinister in intent.  

A major challenge of insider attack detection research is the lack of real data in 

order to study and measure general solutions and models. It is hard, if not impos-

sible, to collect data from normal users in many different environments. It is espe-

cially hard to acquire real data from a masquerader or traitor while performing 

their malicious actions. It is hard to obtain real intrusions for ground truth test and 

evaluation for a number of reasons: 

• Researchers generally do not have direct access to real attacks 

• Attacks may be undetected and thus unavailable for study 

• Organizations do not admit that they were attacked and hence shy 

away from cooperating with researchers 

• Attacks might be mistaken for incompetence 

Even if such data were available, it is more likely to be out of reach and con-

trolled under the rules of evidence, rather than being a source of valuable informa-

tion for research purposes. Because of the scarcity of real data, Chinchani et. al. 

created RACOON [Error! Reference source not found.], a system for generating 

user command data for anomaly detection from customizable templates represent-

ing particular user profiles. However, the system is likely to suffer from the same 

shortcomings of most simulated data. Even though noise is introduced into the 

simulated data, that noise still followed a predictable distribution and is unlikely to 

follow a real empirical distribution from a particular real world setting.  

Given these challenges, devising capture the flag exercises to generate insider 

attack datasets that are realistic in nature may provide a means of advancing the 

state-of-the-art in understanding and solving the insider threat.  

It is generally unknown what types of audit sources are most discriminatory to 

reliably detect insider malicious behavior. Moreover, it is not obvious what 

amount of data is needed for modeling, nor how long the training or data collec-

tion period should be. 

We posit that malicious insider actions on computer systems are likely to occur 

at the application level. For instance, a customer service employee in a call center 

may access more customer records on one particular day than he/she typically ac-

cesses on other days, possibly to commit a crime to sell confidential information. 

Detecting such unusual events can only occur at the business application level, 

and application-level knowledge is needed to understand the user’s intent and con-

firm whether the intent of user actions is possibly malicious. This may be detect-

able using host-based sensors and audit sources, and possibly through network-

based sensors if the application is accessed remotely and the content flow on the 

network were exposed for analysis. 



 

The most vexing problem for researchers is to devise detection methods that 

accurately distinguish between the cases where an insider attack is verified with 

high confidence versus cases where an insider attack is inferred from partial 

knowledge of possibly suspicious actions. Distinguishing false positives from true 

positives in the presence of uncertainty is particularly challenging when people’s 

reputations are at stake. Hence, we also believe that any technologies developed to 

detect insider attack have to include strong privacy-preserving guarantees to avoid 

making false claims that could harm the reputation of individuals whenever errors 

occur.  

Another important topic for research is the investigation of alternative mitiga-

tion strategies. For instance, how does a monitoring or detection system challenge 

a user when the system detects what it believes are malicious activities? How 

might a system alert a supervisor of a possible attack without disclosing an em-

ployee’s true identity unless and until an attack has been validated?  

Beyond the significant challenges in computing accurate user profiles, consid-

erable effort is needed on developing techniques for trapping traitor behaviors. 

We believe a major challenge will be to develop and inject bogus data and infor-

mation that is believable to sophisticated humans with full knowledge of an or-

ganization’s internal systems without negatively impacting operations. How does 

one develop a trap for those who are aware that such technology is in use and do 

so without poisoning the legitimate operations of the organization’s systems and 

functions? 

 

5. Conclusion 

 
Insider threat detection is a nascent research field ripe with opportunities for 

new approaches and new research methodologies. A plethora of machine learning 

and modeling algorithms are available as well as a wealth of audit sources that can 

be acquired effectively. However, building effective and highly accurate auto-

mated monitoring and analysis systems for detecting insider attacks remains an 

open challenge.  

The lack of ground truth data limits the potential value of various proposed so-

lutions since the accuracy of any proposed method is hard to measure and validate. 

Even so, much work has been published using “simulated” masquerade attack 

data. We surveyed the different machine learning and modeling algorithms ap-

plied to masquerader attack detection using host-based and network-based audit 

sources. There has been a modest amount of work in the area. However, the best 

audit sources and most discriminating features one might use in automated sys-

tems to detect masquerader are still unknown. The experimental methodology has 

been generally weak sue to the lack of suitable realistic data. Although, there have 

been many methods proposed, their utility is uncertain, and none of them is clearly 

superior to all others. Although one dataset, the Schonlau dataset, has been useful 

for a community of researchers to use in comparative evaluations, that dataset it-

self is insufficient to conduct realistic evaluations. The data set is limited in scope 



 

of information it provides, and does not contain true insider attack command se-

quences. At best, the dataset may be useful to compare computational perform-

ance between competing algorithms, but accuracy is not measurable in a meaning-

ful way. 

A number of other approaches have been studied only partially and remain the 

subject of considerable future research. Trap-based technologies and use of decoys 

and honeypots of various types have only been partially explored, and offer nu-

merous challenges to be effective methods of detecting sophisticated human in-

sider attacks.   

By way of summary, new methods of detecting insider attack, whether by trai-

tor or masquerader, remains an open and active area of research, and we expect it 

to be so for some time to come. 
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